
Distributed Tracing of Intruders

By

STUART GRESLEY STANIFORD-CHEN

B. Sc. (University of Sussex) 1988

M. S. (University of California, Davis) 1990

Ph. D. (University of California, Davis) 1993

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in Charge

1995

i

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1995 2. REPORT TYPE

3. DATES COVERED
 00-00-1995 to 00-00-1995

4. TITLE AND SUBTITLE
Distributed Tracing of Intruders

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California (Davis),Department of Computer Science,1
Shields Avenue /2063 Kemper Hall,Davis,CA,95616

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

84

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright by

STUART STANIFORD-CHEN

1995

ii

Acknowledgments

Many people helped me as I worked on this thesis, and as I made my transition

from Physics to Computer Science. Karl Levitt was my thesis advisor and provided

inspirational leadership and guidance throughout. He was also the person who per-

suaded me to work in Computer Security in the �rst place. Matt Bishop shared his

wide knowledge of Unix Security and the literature of the �eld with me on many oc-

casions. Biswanath Mukherjee provided insightful and constructive critiques of this

work at many stages in its evolution. Norm Matlo� was very encouraging and helpful

when I was initially considering the move over to Computer Science.

Todd Heberlein had the original idea of thumbprinting, collaborated with me on

parts of this project, wrote much of the code used in the experiments, and has been

a friend and ally throughout the process - I greatly appreciate his help.

I enjoyed a number of creative brainstorming sessions at the whiteboard with

Jeremy Frank. Chris Wee introduced me to Perl (without which language this thesis

would have taken several months longer), and answered my many questions about it.

On the personal side, I thank the residents of N St Cohousing Community for

providing me with a fascinating place to live. My father Geof proved to me that it

is never too late to change �elds by taking up a career as an Arti�cial Intelligence

researcher in his mid-forties, after spending the �rst part of his working life as a

local government bureaucrat. As in everything I do, the love and support of my wife

Lynnette was critical to success in this project.

Finally, I thank ARPA for funding this research.

iii

Abstract

Unwelcome intrusions into computer systems are being perpetrated by strangers,

and the number of such incidents is rising steadily. One of the things that facilitates

this malfeasance is that computer networks provide the ability for a user to log into

multiple computer systems in sequence, changing identity with each step. This makes

it very di�cult to trace actions on a network of computers all the way back to their

actual origins. We refer to this as the tracing problem.

This thesis attempts to address this problem by the development of a technology

called thumbprinting. Thumbprinting involves forming a signature of the data in a

network connection. This signature is a small quantity which does not allow com-

plete reconstruction of the data, but does allow comparison with signatures of other

connections to determine with reasonable con�dence whether the data were the same

or not. This is a potential basis for a tracing system.

The speci�c technology developed to perform this task is local thumbprinting. This

involves forming linear combinations of the frequencies with which di�erent characters

occur in the network data sampled. The optimal linear combinations are chosen

using a statistical methodology called principal component analysis. The di�culties

which this process must overcome are outlined, and an algorithm for comparing the

thumbprints which adaptively handles these di�culties is presented.

A number of experiments with a trial implementation of this method are described.

The method is shown to work successfully when given at least a minute and a half

of reasonably active network connection. This requires presently about 20 bytes per

iv

minute per connection of storage for the thumbprints.

In addition, the existing (very limited) literature on the tracing problem is reviewed.

v

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 De�nitions : 3

1.3 Organization : 4

2 Related Work 5

2.1 General Background : 5

2.2 DIDS : 6

2.3 Caller Identi�cation System : 8

2.4 Caller-ID : 9

3 Characterization of the Problem 10

3.1 Nature of the problem : 10

3.2 Foxhound : 12

3.3 Thumbprints - idea : 14

3.4 Thumbprints - desireable properties : : : : : : : : : : : : : : : : : : : 15

3.5 Sources of error : 16

4 Implementing Thumbprints 18

4.1 Timing vs. Content : 18

4.2 Breaking up the character stream : 22

4.3 Thumbprints - rejected candidates : 23

4.4 Local thumbprints : 23

4.5 Higher-order local thumbprints : 25

4.6 An example : 32

4.7 Comparing thumbprints : 33

5 Principal Components 38

5.1 Theory : 38

5.2 Application to thumbprints : 41

5.3 Sample Results : 42

6 Proof of Concept Experiments 46

6.1 Thumbprinting code : 46

6.2 Data-taking practices : 48

6.3 Content generation : 49

6.4 Overview of experiments : 50

vi

6.5 Results with a one minute interval : 51

6.6 Results with a ten second interval : 55

6.7 Performance considerations : 62

7 Other Applications 65

7.1 Tracing mail : 65

7.2 Recovering damaged documents : 67

8 Conclusions 69

8.1 Results to date : 69

8.2 Future work : 69

A Product of uniform distributions 72

References 74

vii

List of Figures

4.1 Ping distributions for two distant machines in the U.S. : : : : : : : : 21

4.2 Ping distributions for a number of international machines. : : : : : : 22

4.3 Histograms of metrics between random samples. : : : : : : : : : : : : 29

4.4 Metric at separation 2. : 31

4.5 Metric at separation 5. : 31

5.1 First Principal component of synthesized data. : : : : : : : : : : : : : 39

5.2 The largest 20 eigenvalues of the covariance matrix of our samples of

character frequency in network connections. : : : : : : : : : : : : : : 43

5.3 The �rst three principal components. The value is graphed for each

ASCII character. : 44

5.4 The next three principal components. The value is graphed for each

ASCII character. : 45

6.1 Architecture of the network sni�ng code. : : : : : : : : : : : : : : : : 47

6.2 Histogram of lpair for control data, together with the theoretical dis-

tribution assuming independence in time. : : : : : : : : : : : : : : : : 52

6.3 The �rst three principal components for the ten second data. The

value is graphed for each ASCII character. : : : : : : : : : : : : : : : 56

viii

List of Tables

4.1 Ping timings for various machines around the world. Shown are the

machine from which ping was run, the target machine, the number of

observations and the mean and standard deviation of the round trip

time (in ms). : 19

4.2 Thumbprints in concept experiment. : : : : : : : : : : : : : : : : : : 32

6.1 Number of trials and percentage of each number of hits for the exper-

imental runs described in the text. : : : : : : : : : : : : : : : : : : : 53

6.2 Cross control: ratio of signi�cance of true comparison with best of

control comparisons. : 55

6.3 Overview of ten second injected connections. Here, N is the number

of consecutive ten-second intervals used (including idle ones), X is the

target machine, � is the maximum length of \thinking" pauses in the

content generator (in seconds),m is the number of characters generated

per burst by the content generator. Approximate start and stop times

of the runs are also given. : 57

6.4 Failure rate for two independent thumbprints applied to varying length

of connection (columns) and experimental runs (rows). : : : : : : : : 60

6.5 Failure rate for four independent thumbprints applied to varying length

of connection (columns) and experimental runs (rows). : : : : : : : : 60

6.6 Failure rate for six independent thumbprints applied to varying length

of connection (columns) and experimental runs (rows). : : : : : : : : 61

ix

1

Chapter 1

Introduction

1.1 Motivation

Networked computer systems are under attack, and the number of attacks is growing

exponentially. In 1990, 252 incidents were reported to the Computer Emergency

Response Team (CERT). In just the �rst six months of 1994, that number had grown

to 1172. In addition to the growth in the number of reported incidents, the number

of systems involved per incident is growing - one recent incident involved 65; 000

systems.1

Furthermore, it seems probable that most incidents are not detected or reported.

For example, ASSIST, the Department of Defense incident response team, recently

evaluated the security level of one of their sites by launching automated attacks

against it continuously for two months. Only one person reported suspicious activity.

In a second example, a particularly security conscious DoD site detected 69 attacks

in 1992. After installation of an intrusion detection tool, they detected 4100 attacks

in just the �rst quarter of 1993.2

Why are so many attacks occurring? Studies reveal computer attacks have simi-

larities with many other crimes: perpetrators have many motives, including greed,

revenge, the thrill of the chase, and peer pressure.3,4 As the Internet continues to

grow, and as more and more commercial activity takes place over it, it would seem

likely that the problem will continue to worsen.

Studies also suggest that many intruders are deterred by the perceived risks in-

2

volved. One of the intruder's greatest fears is losing his or her anonymity.4

Unfortunately, attackers can take advantage of the architecture of the Internet to

hide their point of origin, thus preserving their anonymity. Since many hosts are

insecure, intruders assemble a collection of accounts on hosts around the world that

they have broken into. When conducting an attack, they log-in through a series

of such hosts before assaulting the target. Since the machines in question are in

di�erent administrative domains, with personnel who may not know or trust one

another in advance, and perhaps do not even have the same legal system, this makes

it extraordinarily di�cult to trace back the chain of activity to its source. Cli�ord

Stoll's experience is a good example.5

Because of these problems, most incident response teams such as CERT make little

or no e�ort to �nd the intruder. The result: an intruder still has all the potential

rewards with almost no risks.

The goal of my research in this area is to develop means by which intruders can

be traced e�ciently. An important restriction which is imposed on the approaches

considered is that they can be retro�tted to the existing Internet. Thus, I do not

consider methods which would require changes to the low-level network protocols, or

require a veri�ed trusted computing base.

This means that the methods produced will certainly be imperfect. It is impos-

sible to produce a foolproof method to give correct security information when the

scheme must be implemented on hosts and networks which have insecure operating

systems and insecure protocols. Nonetheless, I feel that some tracing ability, however

imperfect, is better than none at all.

3

1.2 De�nitions

We here de�ne some terms which will be used throughout this thesis.

When a person (or a program) logs into one computer, from there logs into another,

and another, via network connections or modems, we refer to that as an extended

connection, or a connection chain. We refer to the sections of the chain nearest

to the source of the activity as the upstream parts of the chain.

An identi�cation service is a service which claims to identify which human is

responsible for any particular activity on a computer or network. We are mainly

interested in network-wide identi�cation services

In general, identi�cation mechanisms fall into two classes. In the �rst class are

methods which attempt to keep track of all individuals on the network and account

all activity to network wide user-ids (either �xed user-ids or ones dynamically created

at the time users appear on the network).

The second class contains reactive tracing mechanisms. In this case, no global

accounting of users is attempted until a problem arises. Then the activity is traced

back to its source. Thus, the main task of a tracing mechanism is, given some part

of a connection chain, to identify the beginning of it.

A security domain is the set of machines and networks which are operating the

currently discussed security system.

The word hacker has several meanings. For the purpose of this thesis, we only use

the meaning of a malfeasor attempting to penetrate or misuse a computer facility.

We interchangeably use attacker or intruder to mean the same thing.

4

1.3 Organization

Chapter 2 of this thesis surveys what work has already been done on the problem of

tracing of intruders.

Next, Chapter 3 attempts to characterize the nature of the tracing problem and

what solutions are possible. Then thumbprinting is introduced, as a concept, and

the desireable properties of thumbprints are explained. Chapter 4 provides a more

detailed consideration of possible ways to implement thumbprinting, and the speci�c

way used here. Chapter 5 expands on one aspect of this { the use of principal

component analysis to choose the thumbprint function. Chapter 6 describes the

experiments performed to date to determine the success of this scheme.

Chapter 7 considers other applications for thumbprinting besides tracing network

connections.

Finally, Chapter 8 discusses what conclusions can be drawn from the work to date,

and what work remains to be done.

5

Chapter 2

Related Work

2.1 General Background

The topic which this thesis concerns has received little attention in the literature.

Here we review what is known about it.

Firstly, several works describe the exploits of particular hackers and the process of

tracking them down. These provide motivation for the work presented here. Cli�ord

Stoll spent months tracking down a particular hacker (who proved to be in the pay of

the KGB). A popular account is available,5 as is a more technical account.6 Another

perspective on this story is a book by Marko� and Hafner,7 which also details several

other incidents.

Several sources written by members of the intruder community describe their view

of their practices and various case studies (of uncertain veracity for the most part).

Some of the more accessible include the electronic journal Phrack8 and the mag-

azine 2600.9 Also worthy of mention is a book intended as a how-to manual for

intruders.10 These sources tend not to give detailed technical information on trade-

craft, but rather general advice on tactics (and a fascinating glimpse of the culture).

One piece of advice that is frequently re-iterated is for hackers not to use their own

accounts when carrying out some misdeed.

From another direction, there are a number of systems which seek to provide dis-

tributed identi�cation and authentication by ensuring that all hosts in some admin-

istrative domain have access to the same database of user-ids. A simple example is

6

the NIS (Networ� Information System) developed by Sun Microsystems. NIS is used

at many sites to maintain centralized records of users.

Another, much more sophisticated, example is Kerberos.11 Again, the system main-

tains a central concept of who every user is. Each user has to prove his identity to

the system (through cryptographic protocols) before being able to carry out many

activities (such as logging in to one of the hosts covered by the system).

However, in many cases, it is impractical to have all the machines in the security

domain shara a common user namespace. Thus a number of systems have attempted

to provide a distributed identi�cation service, or an ex post facto tracing facility,

and we now turn to those. All of these systems have only been deployed on an

experimental basis.

2.2 DIDS

The Distributed Intrusion Detection System (DIDS) was initially developed at UC

Davis where a prototype was built.12 Subsequent work on the system has been done

by Trident Data Systems. One of the tasks DIDS performs is to keep track of user

movements, at least within the domain which the system is monitoring. Speci�cally

it attempts to track all TCP connections and all logins on the network. It maintains

a notion of a Network Identi�er (NID) at all times for all activities on the system. If

a user logs in from one system to another, activity on both systems will be accounted

to the same NID. To do this DIDS uses a Distributed Recognition and Accountability

(DRA) algorithm.13

The way DRA works is as follows. Each monitored machine collects an audit trail

which is analyzed by a Host Monitor residing on that particular host. The host

7

monitor abstracts certain features of this record and ships them to a central DIDS

Director for analysis. Events relevant to tracing are the following:

Connection start CS(saddr, daddr, suid, ts)

Connection accept CA(saddr, daddr, ts)

Session start SS(saddr, daddr, duid, ts)

Fail login FL(saddr, daddr, ts)

Connection end CE(saddr, daddr, ts)

Session end SS(saddr, daddr, duid, ts)

Activity record AR(host, uid, activity, ts)

Here, saddr and daddr are the source and destination addresses, suid and duid are

source and destination user-ids on the respective systems, and ts is a timestamp.

The algorithm involves maintaining a graph where each node corresponds to a

particular pair of (host, user-id), and each edge corresponds to a connection between

the user-ids on the hosts in question. As events of the kind listed above arrive at

the Director, the graph is updated appropriately. The algorithm becomes complex

because events may arrive out of order { details and a proof of correctness can be

found in the references.13

DIDS is capable of reliably keeping track of all users moving around on the network

through \normal" means. It has some limitations however { it does not examine User

Datagram Protocol (UDP) tra�c or asynchronous movement of data through such

means as �les. Perhaps its biggest limitation is that DIDS only can account activity

as long as the activity stays within the DIDS domain. A user logging into an external

machine and then logging back into the DIDS domain can achieve anonymity. Users

8

coming from outside are only traced back to their �rst incarnation on a machine in

the domain.

Finally, as with any such system, if parts of the software infrastructure are replaced

with Trojan horses, its e�ectiveness can be reduced.

2.3 Caller Identi�cation System

A system which is a hybrid between a distributed identi�cation system and a reactive

tracing system is CIS (Caller Identi�cation System).14 This system is invoked in an

attempt to authenticate users about to log into a machine at the end of an extended

connection. Each machine along the chain keeps a record of what the chain looks like

upstream of it. When the user attempts to log into the nth machine from the n�1th

machine, the nth machine asks its predecessor for information about the chain so far.

The nth machine then queries machines 1 through n�2 to check that their impression

of the connection chain agrees with that of machine n� 1. Only if all machines along

the chain agree (and machine 1 is acceptable to machine n) does the login proceed.

This recursive checking of the chain eliminates some, but not all, of the obvious

attacks on this kind of scheme. For example, suppose an attacker logs in to machine

H1; H2; : : : ; Hn, and suppose further that he subverts the system on machine Hk to

lie to anyone who asks and say that he came from machine Jk�1 instead. If he has

also subverted Jk�1 so that it reports that he is logged on to the console, then he has

successfully duped the system. It will report that he is coming from Jk�1 when he

is in fact located on H1. No information that would enable the true location of the

hacker to be obtained will then be available, and nothing will indicate to the observer

that there is a problem.

9

We also note, as with DIDS, that the system only provides any authentication

service as long as all parts of the connection chain are within the security domain.

Finally, the number of queries required by this system is quadratic in the length of

the chain which could cause performance problems in some instances.

2.4 Caller-ID

A di�erent approach was actually used by the United States Air Force to track an

intruder and arrange for his arrest.15 This technique, called Caller ID, is controversial

and required special permission from the Department of Justice, so it is probably not

a technique for general use.

Caller ID is based on the belief that if an intruder hops through intermediate

systems prior to making an attack, there is a high probability that these systems

have known vulnerabilities which the intruder used to access them. For example,

if the intruder hops through H0 ! H1 ! : : : ! Hn, where Hn is the target, then

H1 through Hn�1 contain at least one vulnerability allowing access by an outsider.

The Air Force, having knowledge of the same attack methods that their intruder did,

simply reversed the attack chain - breaking intoHn�1, examining the system tables to

see from where the intruder was coming, breaking into Hn�2, and so on. Eventually

they identi�ed the original point of entry of the perpetrator.

The drawbacks of this tracing technique include the possibility that one cannot

break into one of the intermediate systems, one must perform the tracing while the

intruder is active, and one runs the risk of accidentally damaging intermediate sys-

tems. For many practitioners, the legal situation is likely to cause severe problems

also.

10

Chapter 3

Characterization of the Problem

3.1 Nature of the problem

The problem which this thesis addresses is that of how best to perform reactive tracing

on a TCP/IP internet with multiple administrative domains. In general, there are two

obvious places to put components of a tracing system - on the hosts in the domain, or

attached to the network. Network solutions can either be part of the infrastructure

such as routers, or systems passively monitoring the network for security purposes

and performing no other function.

Firstly, we consider host-based solutions. These involve one tracing system per

network host. Each such system is capable of establishing where a chain that crosses

it goes next, and tracing is accomplished by the hosts communicating in some way to

establish the whole extended connection. The CIS system described in Chapter 2 is

an example of this approach. I also developed a system called Foxhound, using similar

ideas but with an emphasis on ex post facto tracing rather than authentication. This

is described in the next section.

The di�culty with all such host-based tracing systems is that, when an extended

connection crosses a host which is not running the system, accountability is alto-

gether lost at that point. This severely limits their usefulness as a general purpose

tracing mechanism on an internet. Since many hosts on internets are not secure, the

integrity of the tracing system on those hosts cannot be relied upon. Intruders almost

re
exively install Trojan horse versions of important system binaries on hosts they

11

penetrate. Even if most hosts could be secured, the intruder community could easily

maintain a set of machines to launder connections, just as they maintain anonymous

remailers which allow the origin of email to be disguised.

Another di�erent class of approaches is based on thumbprinting. This relies on the

fact that the content of an extended connection is invariant at all points of the chain

(once protocol details are abstracted out). Thus if the network tracing system can

compute summaries (thumbprints) of the content of each connection, these summaries

can later be compared to establish whether two connections have the same content.

The technical feasibility of this idea will be discussed later in the paper. The main

limitation of this approach is that it is still vulnerable to countermeasures. Firstly,

the system must still be protected from Trojaning, though this is perhaps easier to

do since there are fewer stations involved and they can be special purpose with most

parts of the operating system removed. The second weakness is that disguising the

content of the extended connection (such as encrypting it di�erently on each link of

the chain) can circumvent the technology.

By far the most compelling advantage of the thumbprinting approach is that it

could be useful even when only parts of an internet use it. For example, if only one

site and the backbone networks run the system, the one site can already deduce useful

information about where an attack is coming from (by comparing the thumbprints

of the connection of interest at its site with all thumbprints in the same timeframe

on the backbone). We note that since the thumbprints are very small, it is usually

impossible to deduce details of the connection content from them. This limits their

impact on privacy to tra�c analysis.

12

3.2 Foxhound

In this section, we describe our �rst prototype system to do host-based tracing. It

runs under several variants of the Unix operating system.

The system works by investigating the system tables of the machine in question.

The algorithm used is as follows. A server process runs on each of the machines that

are part of the tracing system. The tracing process is initiated by an administrator

running the client program on one of these machines. The client program is told the

process id to investigate.

The client then queries the server on its own host, supplying it with the target

process id. The server then traces back the parent of that client, the grandparent of

that client, etc, all the way back to the init process. For each such process, it supplies

the client with information about the process, including any open TCP connections

which that process has.

The client processes this information, and for every TCP connection supplied to

it, it queries the server on the remote end of that connection. It provides that server

with the port and address information associated with the connection. The server

examines the process table to map that information to a process number. It then

repeats the same procedure of �nding the parent and grandparent of that process,

associating any open connections with them, and supplying the resultant information

back to the client.

The client keeps querying servers as long as it can until it has exhausted each par-

ticular chain. This can happen in one of two ways - either the client gets information

back from a server in which no parent process was associated with a connection, so

the tracing can go no further and the client assumes the activity began on that host.

Alternatively, the client may query a machine which does not respond, or responds

13

unintelligibly. The client assumes that this is because the machine in question is

outside the tracing system and thus does not have a tracing server operating. It then

counts the activity as having originated on that machine (since again, tracing can

proceed no further).

The system does not examine the process table for itself. It uses the standard

Unix ps command and a public domain utility called lsof developed by Vic Abell of

Purdue University.16 The latter gives a listing of all open �le and socket descriptors

associated with each process. Included is enough information to determine the remote

end points of any TCP connections which the process has open.

In tests, the system showed itself capable of tracing a straightforward chain of

rlogins and telnets back to their source (or the point when the chain entered the set

of machines on which Foxhound was being run). The process typically takes a second

or two per host in the chain.

Although the �rst version of Foxhound works well, experience gained with it sug-

gests a variety of possible improvements which we are working on. Speci�cally, we

plan to change the protocol to a recursive one in which the client only contacts the

�rst server which contacts the next one on its behalf and so on. This allows for

more administrative
exibility in how much information the client receives. Another

improvement is to use a more robust mechanism for connecting processes on a given

machine. Presently, we assume that information only
ows between parent and child

processes. The next version will consider information to be
owing between any

processes which share an open �le, device, or pipe.

14

3.3 Thumbprints - idea

The idea of a thumbprint, which was originally proposed by Heberlein et al,17 is a

small quantity which e�ectively summarizes a certain section of a connection.

In the simplest scenario, suppose an intruder is logged in through a chain of ma-

chines, A;B;C;D. Every time the intruder presses a key, that causes a TCP segment

to be generated and sent from A to B. B quickly processes the character and sends

it on in a new segment to C. C similarly unwraps the character and rewraps it in

another segment as part of the connection between C and D. D �nally gets the

character and acts on it appropriately. Of course, in between each pair of machines

shown here, the TCP segment is put into an IP datagram which traverses multiple

networks and routers which are transparent to the TCP protocol. Similarly segments

may be transmitted several times as part of the error correction protocols. However,

allowing for this, the data in the extended connection is the same at all points along

it. Thus, there is hope that a suitable summary of the data can later be be used to

reconstruct the chain of connections.

The ideal is a function of the connection which uniquely distinguishes a given

connection from all other unrelated connections, but has the same value over two

connections which are related by being links in the same connection chain. If all com-

ponents of the system routinely store thumbprints, then in the event of an intrusion

being detected, it is possible to trace the connection back by comparing thumbprints

from di�erent hosts or networks.

In the short term, there are several applications in which this kind of technology

could be deployed almost immediately.

1) In the context of distributed intrusion detection systems such as DIDS,12 thumbprint-

ing could allow the system to relate activity which went outside the domain but then

15

re-entered. This might be important when an inside attacker was seeking to disguise

himself as an outsider. Indeed Trident Data Systems in conjunction with the Air

Force O�ce of Information Warfare is presently incorporating these ideas into DIDS.

2) Thumbprinting systems could be placed at the places where a network for some

site touched other networks. This would allow the administrators of that site to

determine whenever their systems were being used as a pass-through site..18

3) Sites which were logically a single site, but physically several networks, could

use this means to correlate activity between the di�erent sites.

4) Law enforcement in pursuit of particular intruders could use this technology at

a variety of places which were under suspicion as the likely source of an intruder.

In the longer term, this technology could become a useful component in a general

internet tracing system (akin to the trap-and-trace facility provided by the phone

networks). No such facility is presently planned. However, as computer networks

become increasingly used for commerce, it may become necessary.

3.4 Thumbprints - desireable properties

A good thumbprint should have the following properties.

1) It should require as little space as possible to minimize storage needs for logs of

thumbprints.

2) It should be sensitive; the probability that two unrelated pieces of connection will

be close together in thumbprint space should be as small as possible. Of course, if two

unrelated pieces of connection happen to have the same content then no thumbprint

will distinguish them. The most common case of this is idle connections.

16

3) It should be robust, i.e., it should change as little as possible when the connection

gets distorted by the kinds of errors that are likely in practice. We consider the likely

sources of error in the next section.

4) Ideally, thumbprints should be additive. This means that successive ones can be

combined into a thumbprint for a longer interval. Thus, when successive thumbprints

do not provide a clear comparison, they can be combined to produce a better signal. It

also allows thumbprints of intervals of di�erent but congruent lengths to be compared.

5) Finally, it is essential that creating the thumbprints not place an excessive load

on the network components. It is useful but less important if they are cheap to

compare.

3.5 Sources of error

We have identi�ed the following sources of error. Any thumbprinting scheme must

cope with these.

1) Clock skew. Thumbprints on di�erent hosts may not always start at quite

the same time, and may not end at quite the same time either. This causes errors

in comparing them since characters that in one place are incorporated into the nth

thumbprint of a connection may be in the (n+ 1)th thumbprint elsewhere.

2) Propagation delays. Thumbprints may contain slightly di�erent data in dif-

ferent places because the connections they are measuring are delayed due to signal

propagation. This has a very similar e�ect to clock skew in moving some charac-

ters from one thumbprinting interval to the next. The worst problems are created

by overloaded hosts, rather than by the network itself. Badly overloaded hosts may

pause for seconds or tens of seconds before transmitting data they have received.

17

3) Loss of characters. Since thumbprinting is based on passive monitoring of

connections rather than being a party to them, the system cannot have access to the

error and
ow control features of the transport protocol (TCP). Thus it might lose

some characters (e.g. due to a bu�er over
owing) and not be able to recover them.

This is a problem in practice.

4) Packetization variation. Thumbprinting at a low level in the protocol stack

is made di�cult by the fact that packetization, timing of packet transmission, etc.

are not invariant at di�erent points in the connection chain.

5) Routing e�ects. Packets could be missing from a connection at one point in the

network because some of them have taken a di�erent route through the network. At

present this is not a practical problem because on the time-scale of typical connections

this does not happen often enough to worry about. It can be compensated for with an

additive thumbprinting scheme by combining the thumbprints from several locations

- though this could become complicated.

6) Timing variations. If the time between successive characters is used as a basis

for thumbprints, there will be noise in the comparisons; di�erent TCP segments may

take slightly di�erent amounts of time to traverse a particular host or network. Thus

the time interval between two characters on one network may be slightly di�erent

from that on another.

7) Countermeasures. Characters could be encrypted and then decrypted at

various points in the connection chain. Extra characters could be inserted and then

removed to confuse timing based measurements. This issue is not being considered

for the time being.

18

Chapter 4

Implementing Thumbprints

In the last chapter, we characterized what properties a thumbprint should have, and

what kinds of errors it might be exposed to. We now turn to how thumbprinting

might be done.

4.1 Timing vs. Content

There are two obvious attributes of a connection which could be used in thumbprints.

One is the content of the connection { the actual sequence of characters transmitted

via TCP. The other is the timings of the characters { the succession of inter-character

times which arise from the speci�c rates at which each user types on a given occasion,

complete with rapid typings of some words, long pauses for thought etc.

We �rst discuss the feasibility of timing as at least a partial basis for a thumbprint.

The major concern is that variations in propagation delay will function as noise to

mask out the \signal" of a particular sessions inter-character or inter-packet timing.

To explore this timing variation, I used ping. This is a Unix utility which sends

out an Internet Control Message Protocol (ICMP) packet to a chosen host, which

is then obliged to reply. The version I used estimates the round trip travel time

and reports the results. The data are summarized below in Table 4.1. I worked

mainly from jaya.cs.ucdavis.edu (a machine in our laboratory), but also from jeeves

(a machine not attached to any network) and from axposf.stanford.edu. Destinations

were localhost (the source machine itself), curie.cs.ucdavis.edu (another machine in

19

source destination N � �

jaya localhost 12288 1.0 0.3

jeeves localhost 36722 1.7 12.3

jaya landau.ucdavis.edu 36583 4.9 8.9

jaya curie.cs.ucdavis.edu 36473 6.6 28.4

jaya gnu.ai.mit.edu 59829 96.9 368.6

jaya nova.cc.purdue.edu 18797 135.7 88.6

jaya mersey.csc.liv.ac.uk 20480 188.3 32.5

jaya chenas.inria.fr 20479 229.6 46.8

jaya waikato.ac.nz 43006 277.5 88.1

jaya spiky.rsinet.tn 42848 462.9 163.4

jaya sztaki.hu 19943 543.8 406.7

axposf atina.ar 44672 1538.3 1097.7

jaya atina.ar 44429 1579.6 1133.6

jaya shakti.ncst.ernet.in 18475 2872.8 1461.5

Table 4.1: Ping timings for various machines around the world. Shown are the

machine from which ping was run, the target machine, the number of observations

and the mean and standard deviation of the round trip time (in ms).

the Computer Science Department), landau.ucdavis.edu (a machine in the Physics

Department), two other machines across the U.S. and a variety of machines around

the world.

As can be seen from the table, the variations in timings are disappointingly large.

While the local machines took only a few milliseconds to return, and had standard

deviations in return time on the order of 10 milliseconds, the wider area tests were

much worse. The U.S. tests showed variations of order 100 milliseconds, and the

international tests showed standard deviations of hundreds of milliseconds. Now,

times between successively typed characters are going to be of order a few hundred

milliseconds. For example, typing at 30 wpm (a typical rate for an amateur typist)

gives an average inter character time of 330ms. Thus, for international connections

at least, using inter-character times as the basis for thumbprints will mean dealing

20

with noise that is comparable in size to the signal.�

Two points bear further examination, and make the situation appear slightly bet-

ter. Firstly, one might hope that although the time for packet traversal is rather

variable, it is slowly variable, so that while widely spaced packets take very di�erent

times to traverse the network, successive packets take very similar times. To assess

this, I di�erenced the time-series of successive round-trip travel times. That is, if the

original ping times are t1; t2; t3; : : :, then I looked at the time-series t2� t1; t3� t2; : : :.

If the times were in fact locally stable then these di�erences should all be small.

The average size of the absolute di�erences for gnu.ai.mit.edu was 12.82ms, and

for nova.cc.purdue.edu it was 31.18ms. The same quantity for the French machine

chenas.inria.fr was 33.38ms, while for spiky.rsinet.tn in Tunisia, it was 71.75ms. sz-

taki.hu in Hungary had 124.4ms. Thus, the di�erences between successive times are

rather smaller than the standard deviations of the time distributions, but are still

non-trivial.

The second point (which actually partially explains the �rst) is that the probability

distributions of times are very non-normal. For example, histograms of the round-trip

times for the US-wide machines are in Figure 4.1, while the international machines

are in Figure 4.2. Although the detailed shape of the distributions varies a lot they

all have some common features. They all are bounded below, rise very rapidly in

a narrow peak which contains most of the probability, and then have a very long

tail out to extremely large times. Even for connections between machines within

my department, it is possible to observe ping times of several hundred milliseconds.

In all cases, the visual width of the peak of the distribution is much less than the

�Of course the one way variation will not be as large as the round trip variation, but it will be

between 50% and 70% of it.

21

Round trip time (ms)

P
er

ce
nt

ag
e

of
 tr

ia
ls

 in
 1

0
m

s
bi

n

US machines

0 50 100 150 200 250 300 350 400 450 500
0

 2

 4

 6

 8

10

12

14

16

18

20

jaya to gnu.ai.mit.edu
jaya to nova.cc.purdue.edu

Figure 4.1: Ping distributions for two distant machines in the U.S.

corresponding standard deviation. Thus we see that most of the observed variation

in times comes from relatively few very long times, rather than from most of the

times being spread wide. This is a somewhat better situation. The situation for

international connections might be characterized as typical noise in the inter-character

timings of a few tens of milliseconds to a hundred milliseconds or so, together with a

few percent of the timings which are rendered worthless by very severe noise. This is

still a daunting prospect.

This preliminary analysis is not detailed or realistic enough to categorically rule out

the possibility of useful timing-based thumbprints. Nonetheless, it is clear that there

is likely to be a considerable problem with noise, and hence I preferred to examine

the possibilities of character based thumbprints, which should not su�er from this to

nearly such a degree.

Another possibility is to use packetization as a basis for thumbprinting (eg the

average size of a packet). Formally, such quantities are not invariant across the

extended connection because packetization occurs low in the protocol layering stack.

22

Round trip time (ms)

P
er

ce
nt

ag
e

of
 tr

ia
ls

 in
 2

0
m

s
bi

n

International machines

0 200 400 600 800 1000 1200 1400 1600 1800
0

 5

10

15

20

25

30
jaya to mersey.csc.liv.ac.uk
chenas.inria.fr
waikato.ac.nz
spiky.rsinet.tn
sztaki.hu
atina.ar (axposf)
atina.ar
shakti.ncst.ernet.in

Figure 4.2: Ping distributions for a number of international machines.

Thus I decided to rely solely on the content of the connection after reconstruction

up through at least the transport layer. However, it is possible that changes in

packetization are su�ciently rare that it is worth not reconstructing TCP, but rather

relying on the error tolerance of the thumbprinting method.

4.2 Breaking up the character stream

A connection chain may last for a long time. However, not all parts of it typically

have equal duration. More upstream portions of the chain are established earlier and

end later, and thus contain data which are not present in downstream portions of

the chain. Thus it is not wise to attempt to form a single thumbprint for the entire

length of some connection { it must be broken up into pieces �rst.

The only reliable method I currently know of to do this is by time. For example, all

the data in the �rst minute of the connection is thumbprinted, then all the data in the

second minute. The disadvantage of this is that geographically separated sites must

23

be well synchronized in order to be able to compare thumbprints. We refer to the

length of time of the interval into which connections are broken as the thumbprinting

interval. Failures of synchronization must be small compared to the thumbprinting

interval.

I am also studying ways to break up the connection into pieces that do not depend

on time, but rather on content based triggers. However, this is not yet achieved. All

the work presented in this thesis is based on time divided thumbprints.

A TCP connection supports data
ow in both directions. At present, I lump the

data and thumbprint both directions together. This allows for a simpler analysis { it

is a topic for future research to determine whether this is an e�cient choice or not.

4.3 Thumbprints - rejected candidates

An obvious contender for thumbprints is a checksum such as the Cyclic Redundancy

Checksum (CRC). These are very small, they are very sensitive, they are cheap to

compute. The big problem is that they are not robust at all { any error in the data

used to make the checksum is likely to completely change the value of it. They are

also not additive. Message digest algorithms have the same drawbacks.

Other possibilities considered and ruled out due to space considerations were com-

pression techniques, and signature retrieval techniques (as used in the search of large

free-text databases).19

4.4 Local thumbprints

The scheme I adopted is called local thumbprints. The local comes from the fact that

the thumbprint is a sum of terms, each of which depends only locally on the character

24

stream to be thumbprinted.

For the simplest example, suppose the characters that must be thumbprinted are

a1; a2; : : : ; an, where each ai 2 A, our alphabet. Further, suppose we have a function

� : A ! R (the thumbprint function - its design is discussed later). Then we can

de�ne a thumbprint by

T =
1

n

X
i

�(ai) (4.1)

The advantages of this kind of scheme are as follows. Robustness is good, since if we

lose a few characters, only those terms in the sum are a�ected. Additivity is obviously

satis�ed in that the thumbprint for a combination of two character sequences is the

sum of the thumbprints for the individual sequences (reweighted by the number of

characters). The thumbprint is small since it's just a few real numbers (in practice,

some quantization of them). It's cheap to compute since the function � can be stored

in a lookup table. The remaining question is one of sensitivity - can such quantities

e�ectively distinguish di�erent connections?

Clearly, there exists a possibility that two quite di�erent character sequences could

happen to add up to the same thumbprint. A way to improve this situation is to use

several independent thumbprints. That is to say, we keep a vector of Tj, where each

Tj is de�ned as

Tj =
1

n

X
i

�j(ai) (4.2)

The �j are all chosen independently of each other.

The intuition here is that if two thumbprints are related by the fact that the

underlying connection pieces di�er by one or two characters, then all of the Tj will

di�er from their opposite numbers in the other thumbprint by a distance of only one

or two units. On the other hand, if some Tj in one thumbprint is close to Tj in the

other solely by chance, and not because of any similarity in the underlying connection

25

pieces, then the chance that the other Tj are also similar is very small.

The question of sensitivity will be addressed empirically later in this thesis.

In essence, equation (4.1) mandates studying linear combinations of the frequencies

with which each character occurs in the particular interval of the particular connection

being thumbprinted.

4.5 Higher-order local thumbprints

A number of variations on the scheme in the last section are possible. For example,

given a function (a; b), we could de�ne a digram thumbprint at some separation k

by

T =
1

n� k

n�kX
i=1

 (ai; ai+k) (4.3)

More complex schemes based on trigrams or higher-order combinations are also

possible. It might appear that such schemes would be more sensitive than the sin-

gle character scheme because they capture some information about the order of the

characters in (ai). Ordering information is lost in the single character scheme. I con-

ducted some preliminary experiments which suggested that this makes little di�erence

in practice and so I have focussed on single character schemes. In this section I de-

velop a more systematic description of arbitrary local thumbprints, and then describe

the experiments which caused me to cease work on higher-order thumbprints.

We basically separate the problem into two parts. Firstly comes the choice of the

substrate - whether to use single character based thumbprints, neighboring pairs, pairs

at some separation, etc. The second part of the problem is, given a substrate, what is

the best choice of the thumbprint function �. This second part gets its own chapter

(Chapter 5).

26

Now, we �rst de�ne the distance between two character sequences a1; a2; : : : ; ana ,

and b1; b2; : : : ; bn
b

. If we let nl = max (na; nb) and ns = min(na; nb), then the distance

� is given by

� =
nsX
i

(1� �a
i
;b
i
) + nl � ns (4.4)

where � represents the Kronecker-�. � counts the number of characters which are dif-

ferent between the two sequences and thus generalizes the Hamming distance between

two bit-vectors. (For simplicity, I assume both sequences start at index 1. If the two

sequences are actually shifted relative to one another, it's clear how to generalize the

scheme.) Obviously, � measures how well we can hope to do with any thumbprinting

scheme - if the �-distance between two sequences is zero, no thumbprinting scheme

will be able to distinguish them. Since we want sequences that really are similar to

have similar thumbprints (robustness), we also want the thumbprints of two sequences

to be close when the �-distance between them is small.

Now let us consider how to represent our thumbprints. We refer to the substrate of

a thumbprint as a short sequence I = [i1; i2; : : : ; ik]. Then our thumbprints will be of

the form
n�i

kX
i

�(ai+i1 ; ai+i2 ; : : : ; ai+ik) (4.5)

For example, for single character based thumbprints, the substrate will be the short

sequence [0]. For next-neighbor thumbprints, the substrate will be [0; 1]. For pairs

separated by four intervening characters, it will be [0; 5].

We now de�ne the degree � of a thumbprint to be the cardinality of the substrate.

Thus single character thumbprints have degree 1, while pair based thumbprints have

degree 2. Now any given term in the sum that forms the thumbprint depends on

� characters. Therefore, if the space of characters is A, the domain of a particular

thumbprint function is A�. Hence, given a substrate, we can completely characterize

27

a sequence of characters to be thumbprinted by the number of times each element in

the domain occurs when the substrate is applied over that sequence.

For example, if A is the set of lower case letters of the alphabet, and the substrate

is [0; 1], then we can characterize the sequence, as far as any possible thumbprint

function is concerned, by counting the number of times aa occurs in the sequence,

the number of times ab occurs, and so on. The important point is that if we know

these counts, then we can forget about the original sequence { we have all the infor-

mation in it which thumbprints based on this substrate can discern. In particular, if

two sequences have the same counts of character pairs then no such thumbprint can

distinguish them, even though they may be di�erent.

We can formalize this notion. Suppose x is a variable which runs over all the

possible points in A�. Then we can use x to index the basis vectors in a vector space

that will help us to characterize the problem. For example, consider the vector of

character counts �
N = [Nx], where each component Nx represents the number of times

the character combination x occurs in the sequence to be thumbprinted. For example,

if the substrate was [0; 2], then Naa would be the number of times that an a in the

input was followed after one arbitrary intervening character by another a.

Now, if we represent by �x the value that a thumbprint function � takes at position

x in its domain, then a thumbprint becomes

�
�:

�
N =

X
x

�xNx (4.6)

Thus a given thumbprint function for this substrate can be represented by a vector

in the vector space, and the thumbprint for some particular sequence becomes just

an inner product between the thumbprint function vector and the �
N vector for that

sequence.

With that in mind, we can de�ne the distance between two sequences with respect

28

to a particular substrate I as something like

�I =
q
(�N � �

N
0):(�N � �

N
0) (4.7)

The role of �I is to measure the best that any thumbprint over substrate I can

do. It is independent of any particular choice of �. Thus we can attempt to use it

to compare di�erent substrates, without worrying about the complication of what

particular thumbprint functions we use. The results should probably be interpreted

with caution though - in some sense it measures the best case performance of the

substrate, not the average case.

How does �I relate to �? Suppose the two sequences have no characters in common

(e.g. one is all a s and the other is all b s). Then � = nl, the length of the longer

sequence. However, �I = na+nb.
y Thus, for sequences of approximately equal length,

�I
<

�
2�. However, �I may not nearly saturate this bound.

As an alternative way to think about the problem, consider the e�ect of small

changes to a sequence. Suppose we lose just one character from the sequence, but

know that it is lost.z The distance between the old sequence and the new in terms

of � is just 1. However, the distance in terms of �I is �I , the degree of the substrate,

since that is how many terms in the thumbprint sum will be a�ected by the lost

character. Thus, other things being equal, shorter substrates are better as they give

less response to error.

But are other things equal? To see what happens with these metrics in practice, I

used a sample of about one megabyte of my computing activity in a terminal session

(using the Unix script utility). I took a series of pairs of random samples from this

yActually, for substrates of order greater than one, this is only a large n approximation.
zThis would typically be the case because TCP provides sequence numbers for all bytes, so a

missing packet shows up as a gap in the sequence numbers.

29

distance between samples

pe
rc

en
ta

ge
 in

 b
in

 o
f s

iz
e

5

Metrics between uniformly distributed sample up to 500 bytes in length

0 200 400 600 800
0

0.5

1.0

1.5

2.0

rho
rho_1

Figure 4.3: Histograms of metrics between random samples.

dataset. The pairs were non-overlapping, and the length of the samples was random

with a uniform distribution from 0 characters up to 500 characters. For each pair, I

computed the distance between them in the various metrics introduced above. I then

made histograms of those distances.

The results of this begin in Figure 4.3. It shows the metrics � (solid), and �1

(dotted). The important thing to get from the graphs is the behavior for small

distances. It is noticeable that the �1 curve goes to zero in exactly the same manner

as the � curve does. My interpretation of this is that, by and large, only those pairs

of samples which were very similar (i.e. close together in �) end up close together

in �1. This is encouraging as it suggests that, although in principle two completely

di�erent sequences could end up with the same counts for various characters, this

is improbable in practice.x What would have been alarming would have been if the

histogram for �1 had tended to a �nite probability density at zero distance.

xIn other words the set of permutations of a sequence is a very rare subset of the set of all the

sequences. This is obvious for completely random sequences, but not quite so obvious for human or

computer generated ones.

30

Next come a pair of �gures which are the analog of Figure 4.3 for other substrates.

In Figures 4.4 and 4.5, �2;1 the distance for a substrate of [0; 1] (pairs of successive

characters), is contrasted with �2;i, (pair of characters at separation i), for various i.

The �rst, perhaps rather surprising, inference that can be drawn from these �gures

is that, when comparing by counting character pairs, the separation of the pairs makes

almost no di�erence. Pairs at separation one are slightly poorer than pairs at larger

separations, but the di�erence is too small to be of any practical importance. Once

the separation is more than one, no di�erence in the results can be discerned.

The second thing that can be discerned from these graphs comes from looking at

them against Figure 4.3. It is clear that at small distances, �2;i is better at dis-

tinguishing dissimilar sequences than �1. However, the di�erence is not huge, and

remembering that a change in an isolated character produces twice as much change

in �2;i as it does in �1, we surmise that this is the cause of �2;i's better performance.

Since this is an empty gain (because it proportionately a�ects errors just as much as

it a�ects genuine di�erences), I conclude that single character counts are just as good

as character pair counts at distinguishing di�erent sequences.

I want to emphasize at this point that this whole scheme of looking at di�erent

substrates and di�erent thumbprint functions is more general than it might appear.

Suggestions for potential thumbprints which I have heard include the number of char-

acters in the sequence, or the number of times particular strings occur in the sequence,

etc. All of these are special cases of this general scheme. For example, the number

of characters in the sequence is obtained by taking substrate f0g, and a thumbprint

function which has value 1 over its entire domain. The number of times \telnet"

occurs in the sequence is a thumbprint in which the substrate is f0; 1; 2; 3; 4; 5g and

the thumbprint function takes the value 1 on the sequence f`t0; `e0; `l0; `n0; `e0; `t0g, and

31

distance between samples

P
er

ce
nt

ag
e

in
 b

in
 o

f s
iz

e
5

Metrics between uniformly distributed samples up to 500 bytes in length

0 200 400 600 800 1000
0

0.5

1.0

1.5

2.0

rho
rho_2,1
rho_2,2

Figure 4.4: Metric at separation 2.

distance between samples

P
er

ce
nt

ag
e

in
 b

in
 o

f s
iz

e
5

Metrics between uniformly distributed samples up to 500 bytes in length

0 200 400 600 800 1000
0

0.5

1.0

1.5

2.0

rho
rho_2,1
rho_2,5

Figure 4.5: Metric at separation 5.

32

1 2 3 4 5 6

38.2 6741.1 6975.7 2587.2 3446.5 2451.2

11.8 13505.5 92.8 2569.7 3388.7 2446.0

Table 4.2: Thumbprints in concept experiment.

zero on every other sequence.

When seen in this light, my intuition is that such schemes are not particularly

advantageous.

4.6 An example

To give the reader some feel for the kind of data I analyze, I present Table 4.2. This

was an early proof of concept experiment, and it di�ers from the current setup in

that it is based on total counts of characters, not frequencies, and it used a single

(i.e. K = 1) randomly chosen thumbprint function. However, it illustrates several

important points.

The top row labels time in minutes. The other two rows are the thumbprints

obtained in two di�erent places on an extended connection chain during each of those

minutes. Notice that in minutes 4 through 6, the thumbprints agree quite well, but not

exactly. Errors of one or two percent like this are quite common due to missed packets

or synchronization errors. The thumbprints in minute 1 do not agree well. This too

is very common at the beginning of a connection chain. As each successive link in

the chain is set up, its thumbprint is initially based on no data, while thumbprints of

earlier links of the chain are based on some text (e.g., the command to log into the

next machine). The most interesting point is that minutes 2 and 3 also match very

poorly. However, if these are added together, then the combined thumbprint for the

33

top row is 13716:8, while that in the bottom row is 13598:3. This represents quite

good agreement. We inspected the datastreams here and determined that the cause

was several large packets of characters which in the lower row fell in minute 1, but

were delayed due to an overloaded host so that by the time they were recorded in

the upper row of the table, they fell into minute 2. I believe this kind of scenario

is not uncommon, and it illustrates the importance of having thumbprints which are

additive and tolerant of noise.

4.7 Comparing thumbprints

Given that we can create thumbprints of connection intervals, we need a procedure to

compare them. This has to distinguish when two connections were the same, and when

they were di�erent. It is complicated �rstly by the need to cope with displacements

of some characters across interval boundaries, and secondly by the existence of noise

in the data due to dropped packets. I developed a procedure which seems to handle

both of these di�culties well.

Since the noise distribution is very di�cult to characterize (because missed pack-

ets, by de�nition, are missed), we work with the known distribution of unrelated

thumbprints and attempt to establish that related ones are atypical if they are con-

sidered to be drawn from a distribution of unrelated ones.

Speci�cally, we start with the K thumbprint components Tk(C; t) for a particular

connection C and time interval t. To compare this with some other set of thumbprints

Tk(C
0
; t), we form the quantity

�t(C;C
0) = log

KY
k=1

jTk(C
0

; t)� Tk(C; t)j

!
(4.8)

The idea is that the product of di�erences between the Tk(C
0
; t) and the Tk(C; t)

34

will be much smaller if C and C
0 are related than if they are not. This will make

�t(C;C
0) larger than expected.

However, if successive thumbprints match over time, that further increases our

con�dence that the connections are the same. We wish to incorporate this fact into

our procedure.

We can consider the Tk(C; t) to be drawn from some probability distribution Pk(T)

of thumbprints of all intervals of all rlogin and telnet connections on the Internet.

This in turn induces a probability distribution for the �t, viz:

�t(C;C
0) � P (�) (4.9)

under the assumption that C and C 0 are independent.

Of course, we cannot know this distribution P (�), but we approximate it by the

following procedure. We take our list of connection-intervals observed in our data

(excluding injections) and randomly draw two of them. Then we compute � from

them using the above procedure as if they had actually been taken at the same time.

Doing this many times gives us a histogram P
0(�). Ours is based on a Monte Carlo

sampling of 107 di�erences. We take this as an approximation to the true P . Now

given this, we de�ne the statistic pt(�t) by

pt(�t) =

Z
�t

0
P

0(x)dx (4.10)

Intuitively, pt is (an approximation to) the probability of observing a � as small as

�t or smaller by comparing independent connection intervals. We refer to this as the

signi�cance of the comparison at time t. A very small pt implies a signi�cant result.

Now, to agglomerate a comparison over time the most naive procedure is to take

the product of the pt for all the intervals in which we can compare C and C 0.

pnaive(C;C
0) =

sY
t=1

pt(C;C
0) (4.11)

35

where we assume that t runs from 1 to s. It is natural to think of pnaive(C;C
0) as

the probability that all the thumbprints would be as close as they are if C and C
0

were unrelated connections. This is not correct for several reasons.

Firstly, in taking the product of the probabilities for successive intervals, we are

assuming independence of successive thumbprint comparisons over time, which is un-

likely to be exactly the case even for unrelated connections. It is not feasible presently

for us to quantitatively assess the lack of independence, and so our approach is to make

the approximation that successive intervals of unrelated connections are independent,

and then study how badly this fails when we apply the whole comparison analysis to

control data. We �nd that although the assumption is not perfect, nonetheless we

are able to distinguish control data from connections which really should match.

More importantly, under the null hypothesis that C and C 0 are independently and

randomly chosen connections, the pt are random variables drawn from a uniform

distribution on [0; 1]. Thus when we take their product, the result is drawn from

the distribution of the product of s U(0; 1) distributions. This distribution can be

calculated analytically (see Appendix A), and the result is

U

s(x) =
(� logx)s�1

(s� 1)!
(4.12)

Thus we de�ne

pbasic =

Z
pnaive

0
U

s(x)dx (4.13)

So pbasic is the probability of pnaive being as small as the observed value or smaller,

under the hypotheses of unrelated connections and independence over time.

This statistic still takes no account of the need in some cases to add together succes-

sive thumbprints because of leakage of characters from one interval into a neighboring

one. Our algorithm is as follows. We compute pt for each t. If pt < � , where the

36

tolerance � is some small value (10�3 in this study), then we immediately count this

value of t as a good match. After we have done this for all t, we go back through

the data and look for situations in which consecutive values of t do not constitute

good matches. We then combine those thumbprints in pairs, and produce a combined

value of � as

�

(2)
t (C;C 0) = log

� KY
k=1

jTk(C
0

; t) + Tk(C
0

; t+ 1)

� Tk(C; t) + Tk(C; t + 1)j
�

(4.14)

Now, the �
(2)
t s are not drawn from the same distribution as the �ts. However, we can

again produce an estimate of this distribution by Monte Carlo sampling of summed

di�erences of independent thumbprints drawn from our data. This allows us, in a

similar way to before, to compute p
(2)
t as the percentile point of �

(2)
t in its distribution.

Thus p
(2)
t is the signi�cance of the comparison of C and C 0 for the combined intervals

t and t+ 1.

The question that then arises is: is the comparison of the combined intervals t and

t+ 1 more signi�cant than the comparison of the two intervals taken separately? To

answer this, the natural thing to do is to compare p
(2)
t
, with

p

(1;2)
t =

Z
ptpt+1

0
U

2(x)dx (4.15)

which is our measure of how signi�cant the comparison is in the two intervals taken

separately.

We then adopt either p
(2)
t or p

(1;2)
t , whichever is the smallest. It is important to note

that both of these numbers are drawn from U(0; 1) under the hypotheses of unrelated

connections and independence in time. The fact that they have the same distribution

is the justi�cation for comparing them. We do this wherever it is advantageous and

the individual pt s failed to meet the tolerance. Suppose we perform this comparison

37

r times. We then have s� 2� numbers p. Some of these may be pt s, some p
(2)
t

s, and

some p
(1;2)
t s. We take the product of all of these and compute

ppair =

Z Q
p

0
U

s�2r(x)dx (4.16)

This we then take as the signi�cance of the full comparison of C and C 0 over the s

time intervals. For convenience we look at

lpair = � log(ppair) (4.17)

This number is always positive, large when the comparison is very signi�cant, and

small when it is not.

We note that it would be straightforward to extend these ideas to adding more

than two consecutive thumbprints together. This analysis has not yet been carried

out.

We make a last point; in practice when comparing thumbprints of related connec-

tions, there is a signi�cant chance that the thumbprints will be exactly the same. This

causes the analysis above to produce an in�nite answer. Alternatively, it is possible

for �t to be so small that it was smaller than any of the values used in constructing the

Monte Carlo approximate histogram �t. This again gives an in�nite answer. In both

of these cases, we refer to this as a dead hit at time t. Thus the analysis produces

two values: the number of dead hits, and the signi�cance lpair of the observations

which were not dead hits.

Generally, any dead hits are very strong grounds for suspecting the two connections

have identical content. lpair comes into play when the data are too noisy to allow of

this.

38

Chapter 5

Principal Components

5.1 Theory

This thesis makes use of a methodology from statistics called Principal Component

Analysis. Although this is adequately discussed elsewhere,20,21 I include a brief ex-

planation here since the technique is not widely known amongst computer scientists.

Suppose we have N data points xi each of which takes its value in some L dimen-

sional space xi = (xi1; xi2; : : : ; xiL). We might visualize the data as in Figure 5.1 (the

reader must imagine the remaining L � 2 dimensions). The basic aim of principal

component analysis is to reduce the number of dimensions we have to consider, but

in such a way as to preserve as much of the information in the original data points

as possible.

We can see that, for the particular data set in Figure 5.1, the data very approx-

imately lie along a line at about 450 above the horizontal. Thus, if we wanted to

approximate the data set by projecting it into just one dimension, this direction

would naturally be the best one to choose. The reason for this is that this direction

captures more of the variation in the data than any other. Intuitively, this direction

is the �rst principal component direction.

If we wish to reduce the problem less drastically however, we will need to choose ad-

ditional directions. Intuitively, the second principal component is the direction which

captures most of the variation in the data, amongst all those directions perpendicular

to the �rst principal component. The third principal component is the direction with

39

x

y

First principal component

-150 -100 -50 0 50 100 150
-150

-100

 -50

0

 50

 100

 150

Figure 5.1: First Principal component of synthesized data.

the largest variation that is at right angles to the �rst two. And so on.

More formally, the total variance in the data set is

�

2 =
1

N

LX
j=1

NX
i=1

(xij � x j)
2 (5.1)

where the x j are the means of the individual components,

x j =
1

N

NX
i=1

xij (5.2)

The variance due to each of the original co-ordinate directions is just the correspond-

ing term from the sum over j in (5.1):

�

2
j
=

1

N

NX
i=1

(xij � x j)
2 (5.3)

The variance is essentially the mean square distance of the data points from their

average value. Thus each �2
j
measures how far the data are spread in the jth direction.

40

However, it may be that none of the original co-ordinate axes capture the variation of

the data particularly well (as in Figure 5.1 where most of the variation is not in the x

or the y direction, but rather at 45O to these (corresponding to the linear combination

x+ y).

If we apply any orthogonal transformation to the data set (a change of co-ordinates

corresponding to a rigid rotation of the space), we get new co-ordinates. In the new

co-ordinates, we can again compute the variance in each co-ordinate direction, and

the total variance. Now a very important fact is that the total variance turns out

to be the same. (We do not prove this fact here but essentially it is because the

total variance is the trace of the covariance matrix and traces are invariant under

orthogonal transformations.)

Thus it is reasonable to compare the proportion of the total variance explained by

some co-ordinate in the new system with the proportion explained by each of the co-

ordinates in the old system. In particular, we can ask which co-ordinate direction in

which rotated co-ordinate system has the highest possible proportion of the variance.

This is the �rst principal component direction. Speci�cally, it is represented by a

linear combination of the original xij which explains the greatest amount of variance.

Now, given that we have a quantity we wish to maximize, we can certainly apply

standard iterative function maximization techniques to �nd the direction which max-

imizes it. However, in high dimensionality with a lot of data, this is likely to be very

expensive in computer time. The reason principal components are nice is that there

is a cheap algorithm to derive them.

Speci�cally, it can be shown that the principal components are the eigenvectors of

41

the sample covariance matrix.

Cjk =
1

N

NX
i=1

(xij � x j)(xik � x k) (5.4)

Not only that, but the eigenvalues of this matrix represent the variance explained by

each principal component. Thus the largest eigenvalue is the variance explained by

the �rst principal component, the second largest corresponds to the second principal

component and so forth.

The covariance matrix can be computed in O(NL2) and it can be diagonalized in

O(L3). Both of these are quite manageable provided the dimensionality L is not too

excessive.

We make some �nal observations on the drawbacks of principal component analysis.

The main di�culty comes because of the de�nition of what is to be maximized { the

variance (5.3). Since this is a sum of squared distances, the e�ect of outlying points

(ones which are on the edge of the distribution) is considerably ampli�ed. Thus the

method is not robust (in the statistical sense).

There are obvious ways to change (5.3) to make it less sensitive to outliers (for

example by changing the exponent from 2 to 1). The di�culty with all such schemes

is that no e�cient algorithm is then known for �nding the principal components - one

has to resort to iterative methods of uncertain convergence properties. I explored one

such possibility at some length but found that I could not obtain reliable answers in

a reasonable length of time.

5.2 Application to thumbprints

Given that we are using single character local thumbprints, the question still arises

as to which such thumbprint function is best. If the vector of character frequencies

42

for a particular period of some connection is �
f = (f1; f2; : : : ; fL), the thumbprint can

be written as a linear combination

T =
LX
a=1

�(a)fa (5.5)

or, component-wise

Tj =
LX
a=1

�j(a)fa (5.6)

Thus we condense the vector of L character counts into a vector of K thumbprint

components. The question that must be addressed is which linear combinations of

the fi should be used?

The aim of principal component analysis is to take a series of vectors and �nd a

set of linear combinations of the components which explains the maximal proportion

of the variance of the vectors. This exactly answers our need. We wish to use the

linear combinations with the greatest variance, since character frequencies, or combi-

nations of frequencies, which vary very little are unlikely to be useful in distinguishing

amongst di�erent connections, while highly variable frequencies are the most likely

to be di�erent in unrelated connections.

5.3 Sample Results

Although I don't describe my experiments fully until the next Chapter, I give some

results here for illustration of the way in which principal component analysis works

out in practice. I obtained from my data sets a total of 28677 distinct samples. Each

of these represented one minute of some, unknown, rlogin or telnet connection on

our Local Area Network. For each of these I formed the character frequency vector

(which has 128 components). I then applied principal component analysis to these

vectors. The largest eigenvalues are shown in Figure 5.2.

43

Rank

S
ca

le
d

E
ig

en
va

lu
e

Largest Eigenvalues in Principal Component Analysis

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

Figure 5.2: The largest 20 eigenvalues of the covariance matrix of our samples of

character frequency in network connections.

Ideally, we could look at this picture and there would be some obvious place to

stop - the �rst N principal components would explain almost all the variance, and

we could ignore the ones after that. This is not the case; the graph becomes very

at after the �rst few components. Rather arbitrarily, we decided to use the �rst

K = 6 components in this study. We hope to study more carefully the impact of this

decision in future work.

The corresponding coe�cients are shown as a function of ASCII character in Fig-

ure 5.3 and Figure 5.4.

The �rst vector (which explains 28% of the variance in our character frequencies)

is clearly measuring how many spaces (ASCII 32) there are in the tra�c versus other

characters. Succeeding vectors make little use of the space frequency. It is striking

that the statistical procedure picks very di�erent things to emphasize than humans

44

Ascii character

V
al

ue
 in

 e
ig

en
ve

ct
or

Principal component vectors

0 10 20 30 40 50 60 70 80 90 100 110 120
-1.0

-0.5

0

0.5

1.0

First eigenvector
Second eigenvector
Third eigenvector

Figure 5.3: The �rst three principal components. The value is graphed for each ASCII

character.

might expect. Our expectation was that most of the meaningful information was in

the relative frequency of letters of the alphabet. However, it seems in fact to be more

useful to work with punctuation characters, terminal codes, and white space. Letters

of the alphabet are mainly treated as a block (the lower case letters occur from ASCII

97 to ASCII 122).

45

Ascii character

V
al

ue
 in

 e
ig

en
ve

ct
or

Principal component vectors

0 10 20 30 40 50 60 70 80 90 100 110 120
-1.0

-0.5

0

0.5

1.0

Fourth eigenvector
Fifth eigenvector
Sixth eigenvector

Figure 5.4: The next three principal components. The value is graphed for each

ASCII character.

46

Chapter 6

Proof of Concept Experiments

In order to test my ideas about thumbprinting in a realistic setting, I developed

C++ code to thumbprint actual network tra�c. This code presently runs on a Sun

4/280 workstation on one of our departmental ethernet LANs. The code uses the

network interface in a promiscuous mode (through the /dev/nit device provided in

SunOS). The software analyzes each packet and associates it with the particular pair

of machines and ports it is traveling between. It reconstructs the data
owing on

each such connection up through the transport layer (TCP). It divides that data up

into consecutive intervals, and saves the frequencies with which each character occurs

in that interval for that connection. At present I restrict my attention to rlogin and

telnet connections (as determined by the internet port number used).

This section describes the code I used, my experimental procedures, and the results

of experiments to date.

6.1 Thumbprinting code

An outline of the organization of the code is shown in Figure 6.1. The code is

organized in layers which (for the most part) match the layering of the TCP/IP

protocol suite. The code is written in C++, and each of the boxes in the picture

corresponds to a C++ object.

At the lowest level is a tap. This object either reads directly from a network in-

terface (such as Sun's /dev/nit for example), or reads from a �le of saved network

47

IP Layer

Session Manager

Ethernet Layer

TCP Layer

Network Tap

Channel Channel Channel

ThumbprintThumbprintThumbprint

Logger

Layers

Streams

Operating System

Figure 6.1: Architecture of the network sni�ng code.

packets depending on which type of tap is in use. It strips o� any OS speci�c in-

formation, and passes up the raw packet to the next layer. In our case, the next

layer is an ethernet layer. It strips o� and processes the ethernet header from each

packet, and passes the data up to the next protocol layer (determined since ethernet

packets are self-identifying). Next there is an IP layer, which removes and checks the

datagram header, and passes the remainder of the packet upwards. There could be

several layers atop IP, but for our purposes only the TCP layer is shown. The TCP

layer is responsible for stripping o� the TCP header, checking the TCP checksum,

and passing the data up to the next layer.

Up to this point, all the layers function alike (indeed they all inherit from an

abstract layer superclass). All are stateless, and a given program is only likely to

48

have one of each kind, which passes packets up to the next one. However, at this

point in the hierarchy, this changes. The TCP layer passes data up to the session

manager. The session manager then assigns this packet to one of many possible

channels - these correspond to connections. At any given time, there is a channel

associated with each open connection (with its own unique source and destination

address and port combination). The channels are responsible for reconstructing the

error free data stream guaranteed by TCP from the packets they receive (as far as

is possible given that sni�ng may occasionally miss packets which the destination

received). Above the channel, there is a thumbprint sequence object which receives

the reconstructed character stream from the channel. It in turn assigns the data to

one of a number of thumbprint objects which it maintains. This assignment is based

on time - successive intervals have separate thumbprints.

In the future, additional layers may handle removing telnet or other protocol related

information before thumbprinting is done. All layers above the channel should be

subclassed from an abstract stream type - several such layers are available already,

but here we concentrate on thumbprinting.

6.2 Data-taking practices

Two points should be mentioned here. Firstly, I mask all characters down to 7

bits since I have found eight bit characters to be comparatively rare in the interactive

connections on our network and it is convenient in the rest of the analysis to work with

only 128 characters rather than 256. Secondly, I have found that ASCII character 24

plays a peculiar role in the data. This character is used by the telnet protocol as part

of its negotiation over which terminal type is in use.22 Normally, this character is very

49

infrequent. However, in a very few of the connections monitored, massive numbers

of these appear (tens or hundreds of thousands per minute). We do not presently

understand the cause of this, though I suspect an implementation bug in some version

of telnet. The resulting variability in the frequency of this character means that it

receives signi�cant weight in the analysis which is undesirable. Therefore I set the

frequency of this character to zero, regardless of its actual value.

A typical experimental protocol is as follows. While the thumbprinting software

is running, I execute a script which sets up an extended connection across several

machines and then causes data to
ow back and forth across the connection in a way

described in the next section.

I arrange for the extended connection to cross the LAN segment I am monitoring

several times. This allows me to compare the thumbprints at those points in the

chain. The only di�erence between this set up and a more realistic one where two

geographically separated pieces of the extended connection were being compared is

that I do not have to arrange for synchronization between the monitors.

The reason I injected my own simulated connections into the network tra�c was

to make it easy to �nd them again when I came to analyze the data, and to allow

me to control variables such as how many machines the extended connection crossed

before returning to our monitored LAN.

6.3 Content generation

When I use a script to create a connections to later study, some data must be issued

into that connection. What should that data be like? I used two separate content

generators, labelled CG1 and CG2.

50

CG1 took a �le of previously saved computer activity, and re-issued it in a random

manner designed to simulate a human. Speci�cally the program chose a random line

in the �le and issued the characters of that line slowly (as though a human were

typing them). Then it issued a random number of lines following that at high speed.

The major drawback with CG1 is that, because it draws its lines in sequence from

a �le, not all the injected connections will have data that is independent of the data

in other injections. To get around this, I developed CG2.

CG2 takes a �le of computer activity of some kind, and loads the whole thing into

memory. It then issues randomly drawn characters from the �le. It loops over three

steps

1. Pause randomly for up to � seconds.

2. Issue randomly up to c characters with a 200 ms spacing.

3. Issue randomly up to m characters as fast as possible.

In each case the randomness is a uniform distribution. Thus the total data rate (in

bytes per second) is

D =
� + 0:2c

m+ c

(6.1)

I chose c = 50, and varied � and m to study the dependence of the thumbprinting on

the content generation parameters.

6.4 Overview of experiments

There are two main sequences of experiments. In the �rst, a relatively small amount

of data was taken with a one minute thumbprint interval. This was analyzed simply

with a view to establishing that the method worked at all.

51

The second set of data was taken with a ten second thumbprinting interval, and

involved considerably higher statistics. The idea here was to start to understand

more quantitatively what the limits of the method are, and what the priorities are

for further work.

6.5 Results with a one minute interval

In total, this dataset involved about a week's worth of collection. Some of this

represented our injected connections, but much of it was unrelated activity by other

users. All of the injected connections used CG1 as the content generator.

I begin by describing our control data-set. I scanned through all the connections

we had recorded thumbprints for. I excluded any which were deliberately created

by us as experiments, and any which had less than �ve minutes worth of data. I

then paired the connections randomly. Any pairs which involved the same set of

machines, or which were closer than an hour together in time were excluded in an

attempt to reduce the chance of accidentally comparing connections which had the

same content. I used a total of 40000 pairings in the control. For each of these, I

applied our comparison methodology to four minutes. (I excluded the �rst minute of

the connections.) I observed exactly one dead hit in one minute of these comparisons.

I checked and found that the character totals were identical, and some detective work

with these suggests that this was the last minute of two unrelated connections which

happened in both cases to contain little more than a prompt, and the word 'logout'.

This kind of thing is bound to happen occasionally.

The histogram of the obtained values of lpair is shown in Figure 6.2 as the dotted

line. The solid line is the curve that would apply if successive values of pt were inde-

52

l_pair

fr
eq

ue
nc

y

l_pair histograms

0 5 10 15 20 25

 5

10

15

20

Theoretical curve for independent data
Observed control data (40000 pairings)

Figure 6.2: Histogram of lpair for control data, together with the theoretical distri-

bution assuming independence in time.

pendent so that ppair was distributed uniformly on [0; 1]. Clearly (as expected) this

assumption is violated and thus comparisons between unrelated connections tend to

be more signi�cant than this assumption would allow. However, it is not so grossly

wrong as to make us abandon the natural comparison suggested in and immediately

after equation (4.15). We also speculate that the extreme right tail of the control his-

togram contains comparisons between connections which chance to have some related

data (a risk when all data is taken on the same network).

We applied the same comparison procedure to four sets of injected data. In Run I,

our extended connection began on toad
ax, went to k2, and then went back to toad
ax

where both toad
ax and k2 are within our department. In Run II, the extended

connection went from k2 to toad
ax to k2 and back to toad
ax. This gave three legs

of the extended connection that could be compared. Thus there are two independent

sets of thumbprint di�erences for each injected connection. As for the control data,

I looked at four minutes worth of data in each case, after dropping the �rst minute

(which usually gives an unreliable comparison).

These two runs gave similar results, so I combined them. There were a total of

53

Run N 4 hits 3 hits 2 hits 1 hit 0 hits

I & II 302 60 17 14 7 2

III 54 20 26 30 19 6

IV 28 4 32 29 32 4

Table 6.1: Number of trials and percentage of each number of hits for the experimental

runs described in the text.

302 comparisons. The percentage of trials with various numbers of hits is given

in Table 6.1. In all, 98:3% of the comparisons gave at least one dead hit. Five

comparisons were su�ciently disturbed by noise as to give no dead hits. The values

for lpair in these cases were 36:49, 37:46, 37:76, 39:70, and 42:34. Comparison of

these values with the control histogram in Figure 6.2 makes it clear that they are

very large, indicating that the method clearly can identify these connections despite

the noise.

In our next experiments, we tested the method on extended connections over long-

haul networks. These are harsh conditions, (but ones that are perhaps typical of

intrusions). The delays between typing a character and seeing the echo were typically

several seconds over these chains. In Run III, the connection chain went

toad
ax! k2! helvellyn

! alps.cc.gatech.edu! k2! toad
ax

Here, alps.cc.gatech.edu is in Georgia while the rest of the hosts are in Davis. We

compared the chain as it left and re-entered toad
ax. All but three of the 54 com-

parisons gave some dead hits. On those that did not, the values of lpair were 22:74,

41:29, and 44:31. Again, these numbers are very far out into the tail of the control

histogram, although the smallest of these does cross with the most signi�cant of the

control comparisons.

54

The schema in Run IV was

toad
ax! k2! helvellyn! po.csc.liv.ac.uk

! alps.cc.gatech.edu! k2! toad
ax

po.csc.liv.ac.uk is in Liverpool, England. Only one of the 28 experimental connections

gave 0 dead hits, and it had an lpair value of 28:09. Thus, even in this long chain,

we can successfully match up the endpoints of the connection in all cases.

I also studied whether I could reliably pick our injected connections out from our

control connections. For each pair of samples from an injected connection, I chose

one of the pair and compared it to all the connections in our control set. We then

assessed whether it was more similar to its actual partner than to any of the unrelated

data.

To compare the value of two matches, it is convenient to have a method to combine

the number of dead-hits with the signi�cance level where there is not a dead-hit.

Thus, we must give a signi�cance level to a dead-hit. To do this, I looked at the

signi�cance level of all of our comparisons on an individual, minute-by-minute basis.

We found that the highest signi�cance level achieved for a minute of comparison

which was not a dead-hit to be 13.82. We therefore set the signi�cance of a dead hit

at 14. We then combined all signi�cances into a single number which incorporated

the dead-hits.

For each of our injected connections, I then computed its total signi�cance in this

manner, and the total signi�cance of comparing it with all the unrelated control

connections. We formed the ratio R between the total signi�cance of the correctly

matched comparison, and the best of the unrelated comparisons. Thus I get one value

of R for each injected connection. If things are working correctly R should be more

55

Run N med R worst R

I & II 302 7.51 3.89

III 54 6.59 2.44

IV 28 7.23 3.49

Table 6.2: Cross control: ratio of signi�cance of true comparison with best of control

comparisons.

than one. Preferably quite a bit more than 1.

Table 6.2 tells the story. For each group of runs, I present the median value ofR and

the worst case value of R. The essential point is that in every case, the comparison

involving the two samples from the same connection had a signi�cance level at least

twice as great as the best comparison of an injected connection to a control connection.

The reader is reminded that the signi�cance here is on a logarithmic scale.

6.6 Results with a ten second interval

The data reported in the previous section convinced me that the method was basically

viable. It remained to try and establish what parameters controlled its success. The

experiments reported here are a �rst attempt at this, though more remains to be

done.

I �rst describe the histograms required for the comparison algorithm. I sampled

a total of 159335 ten second intervals of ambient rlogin and telnet activity on our

target LAN. To this was applied the principal component analysis, and eigenvectors

were derived in the same manner described earlier.

The �rst three are shown for comparison with those obtained for one minute inter-

vals (Figure 5.3). The ten second eigenvectors are shown in Figure 6.3.

These di�er in detail from the earlier ones; however, many of the same broad

56

ASCII character

W
ei

gh
t i

n
ei

ge
nv

ec
to

r

Principal Component Eigenvectors

0 10 20 30 40 50 60 70 80 90 100 110 120
-1.0

-0.5

0

0.5

1.0

First principal component
Second principal component
Third principal component

Figure 6.3: The �rst three principal components for the ten second data. The value

is graphed for each ASCII character.

features persist. As discussed earlier, the overall sign of the principal components is

irrelevant.

Next, all these samples were thumbprinted. Then 107 pairings were randomly

chosen, and the thumbprint di�erences were computed. This gave the histogram of

P (�) referred to in equation (4.9). Similarly, 107 di�erences of sums were computed.

The injected connections themselves consisted of hours-long connections rather than

the four minute ones used earlier. I arti�cially broke them into pieces as necessary.

The beginning and end of each connection were not used as this was during the time

the chain was being set up, and so data in that period was not constant throughout

the chain.

All connections contained data generated by CG2. An important di�erence this

implies is that the connections contain periods longer than the thumbprinting interval

57

Run # N X � m start stop

1 332 po 30 2000 18:11 18:39

2 1588 po 30 2000 18:55 21:06

3 1506 po 30 2000 21:26 23:29

4 638 po 30 2000 12:15 13:12

5 3458 po 30 2000 21:23 02:02

6 478 alps 30 2000 09:00 09:47

7 3706 alps 30 2000 09:50 15:00

8 11870 alps 30 2000 15:15 07:46

9 4122 alps 30 2000 08:43 14:30

10 1980 alps 30 2000 15:11 17:59

11 8774 alps 30 500 20:23 08:37

12 7580 alps 30 200 21:32 08:05

13 7296 alps 15 200 21:46 07:55

14 6226 alps 15 500 23:20 08:01

15 alps 60 2000 20:54 23:59

16 alps

Table 6.3: Overview of ten second injected connections. Here, N is the number of

consecutive ten-second intervals used (including idle ones), X is the target machine, �

is the maximum length of \thinking" pauses in the content generator (in seconds),m is

the number of characters generated per burst by the content generator. Approximate

start and stop times of the runs are also given.

58

which are idle. In contrast to the one minute data, where I only performed compar-

isons on non-idle connections, here I explicitly allow idleness (in an attempt to be

more realistic). Naively, if two connnections being compared are both idle during the

same time, it would count as a dead hit (since the thumbprints are the same (zero) in

both cases). Clearly this is a bad idea since idleness is very common. Thus I treated

the case of idleness specially - when one or both of two intervals being compared

were idle, that comparison got counted as having probability 0.5 (i.e. of having only

average signi�cance).

In this analysis, I wished to have a single measure of how well the thumbprinting

worked in order to compare di�erent settings. In order to do this, I �rstly broke each

of my injected connection up into pieces, with each piece containing q consecutive in-

tervals. Then, I applied the thumbprint comparison algorithm detailed in Section 4.7

to compare each of these pieces between the two versions of the injected connection

that I had thumbprints for. I arrived at a total signi�cance level using the procedure

described in the last section (of assigning each dead hit a signi�cance level).

Next I compared all of the pieces of my injected connections with various pieces

of ambient connection tra�c. (These pieces were also of length q.) I observed the

proportion of these comparisons in which the unrelated connection actually did better

than the true partner. This proportion, which I refer to as the failure rate, is an

estimate of the probability that an unrelated connection will do better than the

true comparison. In the best case, this proportion will be zero { true connections

are identi�ed unerringly. In the worst (reasonable) case, the proportion is 0:5 {

the comparison of two connections which do match is no better than an average

comparison of unrelated connections.

It is convenient to use the inverse of the failure rate, which I refer to as the mean

59

time to failure. The interpretation of this is as follows. If I compare two pieces of my

connections, C1 and C2 say, which are supposed to match, and then begin comparing

C1 to arbitrary unrelated connections, on average how many such comparisons will it

take till I �nd an unrelated connection which is more like C1 than C2 is? This average

time is the mean time to failure.

The mean time to failure (MTF) is the principal tool used to study the success

of thumbprinting in this section. Clearly we would like the mean time to failure

to be large - perhaps in the region of 10; 000 and upwards. With this in mind, I

used 100; 000 comparisons to estimate the failure rate in each case. Thus, I cannot

accurately measure appropriately low failure rates, but can measure unacceptably

high failure rates quite well. However, this is �ne as the intent of this study is to

determine the domain of applicability, and thus we focus on the edges of this domain.

The basic data here is summarized in Table 6.4 which had K = 2 (two independent

thumbprints), Table 6.5 with K = 4, and Table 6.6 with K = 6. Each entry in

the table is the mean time to failure for a particular run analyzed in a particular

way (with an estimate of the standard error where the statistics allowed a sensible

estimate). The rows of the tables represent the di�erent experimental runs, and the

columns represent the size of the pieces that each connection was broken into. Thus a

column labelled \4" was analyzed in chunks of four consecutive ten second intervals.

What can be inferred from this data? The most obvious dependence, regardless

of the number of thumbprints, is on q, the length of interval considered. When

thumbprinting is performed with only two ten-second intervals to work with, the

MTF is almost always unacceptably low - one has only to try a few tens or hundreds

of random connections to come across one as good as the real partner. With four

consecutive intervals to work with, the MTF becomes marginal, but �nally with

60

2 4 8

1 56� 22 339� 331 191� 191

2 42� 9 5555 > 100000

3 67� 19 1176� 860 > 100000

4 21� 4 66� 34 1063� 720

5 37� 6 735� 375 12500

6 203� 121 1000� 921 > 100000

7 43� 7 524� 255 > 100000

8 59� 7 3571� 2093 > 100000

9 56� 10 621� 561 > 100000

10 93� 24 1667� 1667 > 100000

11 89� 13 5556 > 100000

12 97� 16 2174� 613 > 100000

avg 72� 14 1915� 562

Table 6.4: Failure rate for two independent thumbprints applied to varying length of

connection (columns) and experimental runs (rows).

2 4 8

1 69� 34 10000 25000

2 51� 13 100000 > 100000

3 101� 32 6250 > 100000

4 25� 5 130� 111 8333

5 52� 9 4166 > 100000

6 284� 273 3125 > 100000

7 60� 11 16666 > 100000

8 82� 11 20000 > 100000

9 82� 19 680� 653 > 100000

10 111� 35 25000 > 100000

11 138� 25 16666 > 100000

12 149� 32 6666 > 100000

avg 100� 20 17446� 7852

Table 6.5: Failure rate for four independent thumbprints applied to varying length of

connection (columns) and experimental runs (rows).

61

2 4

1 123� 40 1515� 1351

2 49� 12 16667� 6722

3 95� 31 9091� 8298

4 21� 5 99� 93

5 48� 8 2083� 1393

6 326� 312 5882� 4885

7 60� 11 33333

8 80� 11 33333

9 85� 19 787� 775

10 109� 33 50000

11 160� 32 100000

12 169� 37 4761

avg 110� 23 21462� 8500

Table 6.6: Failure rate for six independent thumbprints applied to varying length of

connection (columns) and experimental runs (rows).

eight, MTFs become satisfactory in almost all cases (except when q < 4). Thus this

algorithm, on this network, with this thumbprinting interval, will work adequately

with a minute and a half of a moderately active connection provided that there are

at least 4 independent thumbprint components. It becomes marginal with much less

than that.

Other dependencies are much less clear. We �rst consider dependence on K the

number of independent thumbprint components. Firstly, the average MTFs are not

signi�cantly di�erent between the cases of 2, 4, or 6 independent thumbprints. How-

ever, we can discern some di�erences by being more subtle and using the fact that it

is the same underlying data in each table, so that we can pair up the observations.

For example, if we look at the q = 2 column only, and compare the case of K = 2

with K = 4, we see that in every single row, the MTF for K = 2 is smaller than

that for K = 4. If we made the null hypothesis that K = 2 and K = 4 were equally

good as thumbprinting strategies then it would be equally likely for either to have

62

the larger MTF. Hence the probability of all of the larger MTFs being in the K = 4

table would be 2�12 = 2:4 � 10�4. Thus, this provides strong evidence that K = 4

is in fact more e�ective than K = 2 for our particular experimental setup. A similar

pattern emerges by looking at the q = 4 column.

However, no such pattern shows up to distinguish the K = 4 and K = 6 cases.

Thus, as far as this analysis can determine, taking six independent thumbprints per

ten second interval has no bene�ts relative to taking four. Taking four is perceptibly

better than taking two, but the di�erences are not massive (and may not justify the

increased storage required).

Disappointingly, not much else stands out from the data set. It is clear that some

individual connections were less successfully thumbprinted than others. For example

run 4 seems to have very high failure rates however it is analyzed { but other runs

with the same parameters as this run do not show anomalously low MTFs. Thus

presumably some other variable which was not observed controls this e�ect. I spec-

ulate that this is simply the round-trip propagation across the network which I have

subjectively observed to be quite variable. However, I do not have data to con�rm or

refute this hypothesis.

6.7 Performance considerations

We �nd that, although the LAN segment we have monitored in experiments is fairly

busy because it houses one of our department's main mail and �le servers, the

thumbprinting program typically uses no more than a few percent of the processor

time on the machine it is running on.

While the thumbprint mechanism described here has many applications, we are

63

focusing speci�cally on the assigning of signatures to interactive login sessions. So

although the total amount of tra�c crossing a large internetwork may be enormous,

the portion of the tra�c which is interesting is quite small.

For example, we looked at the tra�c statistics for the NSFNET internetwork.23

For November 1994, the combined rlogin and telnet tra�c of 1:024 � 1012 bytes,

accounted for only 4.56% of the total tra�c. Distributed evenly over the month,

we �nd the data rate to be 3:95 � 105 bytes per second. Furthermore, if we use a

machine which performs 50 million instructions per second, this would allow us to

use 126 instructions for each byte.

While the assumption that the tra�c is distributed evenly is unrealistic, the fact

that a single, moderately powered workstation could, in the steady state, apply 126

instructions to every byte of telnet and rlogin data crossing the NSFNET is remark-

able. Furthermore, while the amount of tra�c across the NSFNET doubled between

November 1993 and November 1994, the tra�c for telnet and rlogin increased at only

about half that rate.

Similarly, a T1 data line can carry 1:9 � 105 bytes per second in total, while a

T3 line carries 5:6� 106 bytes per second. If we make the assumption that only 5%

of these bytes are rlogin and telnet (as on the NSFNET) then our 50 MIP machine

dedicated to this task has about 5200 instruction per byte on the T1 line, and 178

instructions per byte on the T3 line.

These calculations are of course simplistic - they neglect the fact that some work

must be done examining headers of other protocols to determine that they must be

ignored. We are also not in a position to assess the capabilities of suitable network

interfaces. Nonetheless, the fact that upwards of a hundred instructions are available

per byte on average in several contemporary network settings is very encouraging as

64

to the applicability of this method, given an implementation on a machine dedicated

to the purpose.

Measurements indicate that our existing thumbprinting code handles ethernet traf-

�c at 0:35� 0:06 MBps on a Sun 4/280. However, this is general purpose code which

performs many error checks and compiles a variety of statistics. Code optimized for

thumbprinting could probably run several times faster.

65

Chapter 7

Other Applications

I developed the thumbprinting techniques described here to trace connections over

networks. However, I can envisage a number of other applications for the technology.

In this chapter I brie
y outline some of those. Thumbprinting is potentially useful

whenever a series of texts must be compared to see if some of them are almost the

same.

7.1 Tracing mail

It would obviously be extremely useful to be able to trace email. Firstly, some attacks

are based on malformed email. Secondly, email may have contents, which while not

an attack in the security sense, are nefarious in some way or constitute evidence of a

crime (for example, an email death threat to the President).

Unfortunately, the present Simple Mail Transport Protocol (SMTP)24 is extremely

trusting, and consequently it is very easy to forge mail. See for example the helpful

discussion in Phrack, Issue 41. The results are only subtly di�erent from the real

thing, and are very di�cult to trace back to their source.

The sequence of mail forgery goes as follows. In the simplest version, the hacker

on host H telnets to port 25 on host A. He then claims to the SMTP server there

that he is entering mail from host R. He then enters the mail. This does not work

particularly well because the SMTP software senses that something is wrong because

a connection from H is claiming to be from R, and changes the form of the header,

66

thus revealing the mail as a forgery.

In a more complex but much better scheme, the hacker on H telnets to A and

claims to be H transferring mail which has been received from R. SMTP takes this

at face value and marks the From: line of the mail as good userR. The fact that the

mail travelled via machine H is also recorded, and may be grounds for suspicion that

the mail is not genuine. Alternatively, it may well go unnoticed. In any event, should

the mail later fall under suspicion there is no way to �nd the true origin of the mail

- it originated as a telnet connection from H, and there the trail goes cold.

Further elaborations on this are to have the mail routed via several more sites

before reaching the �nal destination.

Clearly, we can thumbprint mail, and we can particularly pick out any connections

to port 25 and thumbprint those too. If we do this successfully, we can help in tracing

mail a lot, in that we can reliably identify which machine a mail message actually

originated on, and then we can perhaps use our telnet thumbprinting capacity to

identify on which machine the message was actually typed.

The main di�erences from thumbprinting interactive telnet connections are �rstly

that mail travels asynchronously. Thus the beginning of a thumbprint must have

some appropriate reference to the mail message. Secondly, mail messages mutate as

they travel, acquiring more and more lines in the header. Thus a thumbprint must

be based on that section of the mail which is invariant.

So the natural thing to do is give one thumbprint for an entire SMTP connection,

but to parse out variant parts of the header (such as the Received: lines) before

thumbprinting.

The kind of ability outlined here raises di�cult policy issues. Viz, there exist

several servers throughout the world which provide the explicit service of anonymity

67

to internet citizens. The user sends a message to the server which maps the user to

a handle. It then generates mail from this handle to the ultimate destination of the

mail. All traces of the original user are eradicated from the message, and only the

server has the mapping between actual email addresses and handles. Such servers

are frequently used by people who wish to exchange mail or make Usenet postings

on subjects with which they do not wish to have their name associated. The kind of

tracing ability proposed here would have the potential to pierce this screen.

This raises a variety of specters: for example, suppose a large company used its

access to the tracing system to discover whether any of the email to, say, an AIDS

support mailing list, was coming from its employees. The company could then use

this information to cut o� health insurance to the a�ected individuals.

7.2 Recovering damaged documents

An actual example problem which was described to me recently was the following. A

large set of mail messages had been extracted from a mailing list server. They had

then been processed and categorized into a convenient structure for browsing. Minor

editing and correction was performed on some messages. During this process, much

of the message headers were eradicated, including the Message-id: line. For various

reasons, it was now necessary to re-associate the `cleaned' messages with the original

ones. How could this be done?

This is an example of where thumbprinting's error tolerance is an asset. It would be

relatively straightforward to parse all these messages, thumbprint the bodies, sort all

messages by thumbprint, and then re-associate the original messages with the cleaned

ones.

68

Similar examples might occur in recovering �les from a disk which had some disk

errors.

69

Chapter 8

Conclusions

8.1 Results to date

The main result of this thesis is that it is easily possible, on an ethernet, to save

summaries of interactive connections which can be stored in only a few tens of bytes

per minute per connection. In the case where these connections are at least a minute

and a half long and have moderate data
ows, it is then possible to compare these

summaries later and identify whether two connections have the same content or not

with very low probability of error. This is true even when one of the sets of data being

compared has passed through a tortuous route to Europe and back on the internet.

The present state of the art is to use four independent thumbprints and thumbprint

on a ten second interval. More thumbprint components than this are probably not

useful. Principal component analysis is used to select the best thumbprint vectors.

Given two bytes per thumbprint component, plus another four bytes to store the

total number of characters, this is 12 bytes per interval, or 72 bytes per minute of

connection.

Alternatively, storing 28 bytes per minute for a one minute long interval gives ex-

cellent results on longer connections, but will fare less well on very short connections.

8.2 Future work

I am actively working to extend this result in various ways { this topic has proven to

be considerably larger than can easily be contained in a single Master's Thesis.

70

Firstly, I am still doing research to �ne tune the statistical algorithms to give

the best performance possible. I am currently implementing a more sophisticated

adaptive algorithm to try to group intervals in more complex ways to increase the

power of the scheme for short connections.

I am also studying ways to break up the connection into pieces that do not depend

on time, but rather on content based triggers. Success at this would obviate the need

to synchronize geographically separated thumbprint stations. The main di�culty with

this scheme is �nding content based triggers that occur in a reasonably uniform way.

From an algorithmic point of view, we would no longer have to worry about characters

over
owing from one interval to the next, but would instead have to worry about two

intervals being accidentally combined into one due to a trigger being missed. With

an additive thumbprint scheme this is not hard to compensate for.

Also under way is an e�ort to design a general purpose protocol for communication

between tracing systems. This will be as independent as possible from particular

assumptions about the way in which a tracing system worked. It will incorporate

thumbprinting as one possible way to describe the data in a connection.

Once this is done, it is my intent to build a prototype system to implement these

ideas and make it available to the Internet community. We anticipate that this system,

where implemented, will be capable of reliably tracking intruders who do not take

adequate precautions to avoid it.

The main vulnerabilities of such a system will be, �rstly, parts of the system being

replaced by Trojan horses, and secondly, intruders encrypting their connections dif-

ferently in each link of the extended connection chain. Such encryption need not be

strong at all - a simple Playfair or Viginere cipher would more than su�ce. While

both of these are within the capability of the more talented members of the intruder

71

community, we believe that a tracing system such as this could raise the entry price

paid to become an intruder, and, where deployed, would increase the risks and in-

convenience of penetrating computers for all intruders. Such a system would not be

a panacea, but might be a deterrent.

72

Appendix A

Product of uniform distributions

We calculate the probability density function (pdf) of

z = x1x2 : : : xn (A.1)

assuming that the xi are distributed U(0; 1). Throughout, we take f(x) to be the pdf

of x, and F (x) to be the cumulative frequency distribution (cfd) of x. To begin, we

de�ne

Y = log(z); yi = log(xi) (A.2)

so that

Y =
nX
i=1

yi (A.3)

Both Y and the yi have range (�1; 0). We can easily calculate F (yi) for each i, since

F (yi) = Prob(logxi � yi) = Prob(xi � e

yi) = e

yi (A.4)

Then

F (Y) =

Z
P

yi�Y

exp
�X

yi

�Y
dyi (A.5)

This integral can be e�ected by making the change of variables

P =
nX
i=1

yi (A.6)

qi = yi � y1 8i 6= 1 (A.7)

(A.8)

If we denote the linear transformation de�ned in these equations by M, then (A.5)

can be rewritten as

F (Y) =

Z
Y

�1

e

P det(M�1)A dP (A.9)

73

where det(M�1) is the Jacobean of the variable transformation, and A is a factor

coming from integrating over the n� 1 variables qi (on which the integrand did not

depend). It is possible, though a little tricky, to directly evaluate A and det(M�1).

It is easier to sidestep this work by noting that, since M is a linear transformation,

det(M�1) must be constant. A, on dimensional grounds, must be proportional to

P
n�1. Thus

F (Y) = C

Z
Y

�1

P

n�1
e

P
dP (A.10)

where C is an unknown constant. This integral is a standard form,25 and the result

is

F (Y) = Ce

Y

"
n�1X
i=0

(�1)n�1�i
(n� 1)!Y i

i!

#
(A.11)

The requirement that F (Y) = 1 at Y = 0 then �xes the unknown constant C at

C =
(�1)n�1

(n� 1)!
(A.12)

Since Y = log z we can deduce the cfd for z as

F (z) = z

n�1X
i=0

(�1)i
(log z)i

i!
(A.13)

Finally, di�erentiating this wrt z gives the pdf for z, which we earlier called Un(z)

U

n(z) =
(� log z)n�1

(n� 1)!
(A.14)

From an implementor's perspective, it is easiest to use this in the form of logF (Y)

which is close to a linear function in the region of interest and so can be e�ciently

approximated as a lookup table with linear interpolation.

74

References

[1] Fraser, B. (CERT). Private Communication, 1994.

[2] Van Wyck, K. (ASSIST). Private Communication, 1994.

[3] R. Bace. A New Look at Perpetrators of Computer Crime. In Proc. 16th De-

partment of Energy Computer Security Group Conference, 1994.

[4] P. Neumann and D. Parker. A Summary of Computer Misuse Techniques. In

Proc. 12th National Computer Security Conference, pages 396{407, 1989.

[5] C. Stoll. The Cuckoo's Egg. Doubleday, 1987.

[6] C. Stoll. Stalking the Wily Hacker. Communications of the ACM, 31:???, 1988.

[7] K. Hafner and J . Marko�. Cyberpunk. Simon and Schuster, 1991.

[8] Phrack. Electronic Journal, 1994. Ftp to ftp.fc.net.

[9] 2600 - The Hacker's Quarterly, 1994.

[10] The Knightmare. Secrets of a SuperHacker. Loompanics Press, 1994.

[11] J.I. Schiller. Secure Distributed Computing. Scienti�c American, pages 72{76,

November 1994.

[12] S. Snapp, et al. DIDS (Distributed Intrusion Detection System) - Motivation,

Architecture, and An Early Prototype. In Proc. 14th National Computer Security

Conference, 1991.

[13] C. Ko, et al. Analysis of an Algorithm for Distributed Recognition and Account-

ability. In Proc 1st ACM Conf. on Computer and Communications Security,

Fairfax, VA, pages 154{164, 1993.

[14] H. Jung, et al. Caller Identi�cation System in the Internet Environment. In

Proc. 4th Usenix Security Symposium, 1993.

[15] Wadell, S. Private Communication, 1994.

[16] Abell, V. lsof. Version 3.10. Computer Software, 1994. Ftp to vic.cc.purdue.edu.

[17] L.T. Heberlein, K. Levitt, and B. Mukherjee. Internetwork Security Monitor:

An Intrusion-Detection System for Large-Scale Networks. In Proc. 15th National

Computer Security Conference, pages 262{271, 1992.

75

[18] Palasek, B. Private Communication, 1994.

[19] C. Stan�ll and B. Kale. Parallel Free-Text Search on the Connection Machine

System. Communications of the ACM, 29:1229, 1986.

[20] W. Krzanowski. Principles of Multivariate Analysis. Clarendon Press, Oxford,

1988.

[21] C. Chat�eld and A. Collins. Introduction to Multivariate Analysis. Chapman

and Hall, London, 1980.

[22] Solomon, M. and Wimmers, E. Telnet Terminal Type Option., 1983. Request

for Comments RFC 884.

[23] Merit Network Information Center. NSFNET Statistics, 1994. Ftp to

ftp.merit.edu.

[24] Crocker, D. Standard for the Format of Arpa Internet Text Messages., 1982.

Request for Comments RFC 822.

[25] M. Abramowitz and I. Stegun, editors. Handbook of Mathematical Functions.,

page 71. Dover, New York, 1965.

